Resolving the VO$_2$ controversy: Mott mechanism dominates the insulator-to-metal transition

Publication
Phys. Rev. B 95, 035113 (2017)

Abstract

We consider a minimal model to investigate the metal-insulator transition in VO\(_2\). We adopt a Hubbard model with two orbitals per unit cell, which captures the competition between Mott and singlet-dimer localization. We solve the model within dynamical mean-field theory, characterizing in detail the metal-insulator transition and finding new features in the electronic states. We compare our results with available experimental data, obtaining good agreement in the relevant model parameter range. Crucially, we can account for puzzling optical conductivity data obtained within the hysteresis region, which we associate with a metallic state characterized by a split heavy quasiparticle band. Our results show that the thermal-driven insulator-to-metal transition in VO\(_2\) is compatible with a Mott electronic mechanism, providing fresh insight to a long-standing “chicken-and-egg” debate and calling for further research of “Mottronics” applications of this system.

arXiv: 1606.03157

Tip me with Testnet Lightning Bitcoin

Get some test funds instantly and permissionlessly on HTCL.me

Dr. Óscar Nájera
Dr. Óscar Nájera
Software distiller & Recovering Physicists

As scientist I studied the very small quantum world. As a hacker I distill code, because software is eating the world, and less code means less errors, less problems, more world.

Next